Non-criticality criteria for Abelian sandpile models with sources and sinks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universality Classes in Isotropic, Abelian and non-Abelian, Sandpile Models

Universality in isotropic, abelian and non-abelian, sandpile models is examined using extensive numerical simulations. To characterize the critical behavior we employ an extended set of critical exponents, geometric features of the avalanches, as well as scaling functions describing the time evolution of average quantities such as the area and size during the avalanche. Comparing between the ab...

متن کامل

Asymmetric Abelian Sandpile Models

In the Abelian sandpile models introduced by Dhar, long-time behavior is determined by an invariant measure supported uniformly on a set of implicitly defined recurrent configurations of the system. Dhar proposed a simple procedure, the burning algorithm, as a possible test of whether a configuration is recurrent, and later with Majumdar verified the correctness of this test when the toppling r...

متن کامل

Two-component Abelian sandpile models.

In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models wi...

متن کامل

The Abelian Sandpile and Related Models

The Abelian sandpile model is the simplest analytically tractable model of self-organized criticality. This paper presents a brief review of known results about the model. The abelian group structure of the algebra of operators allows an exact calculation of many of its properties. In particular, when there is a preferred direction, one can calculate all the critical exponents characterizing th...

متن کامل

Organized versus self-organized criticality in the abelian sandpile model

We define stabilizability of an infinite volume height configuration and of a probability measure on height configurations. We show that for high enough densities, a probability measure cannot be stabilized. We also show that in some sense the thermodynamic limit of the uniform measures on the recurrent configurations of the abelian sandpile model (ASM) is a maximal element of the set of stabil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2018

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.5022128